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D I S C O N T I N U O U S  V E L O C I T Y  F I E L D S  IN A H A R D E N I N G  

R I G I D - P L A S T I C  M A T E R I A L  

S. E. Aleksandrov  and  N. N. Aleksandrova  1 UDC 539.374 

The proposed model and the properties obtained on the surface of velocity discontinuity are 
used to study two processes of plastic deformation: lateral extrusion and torsion of a hollow 
disk. In both cases, analytical solutions are obtained. The limits of applicability of the solution 
to lateral extrusion are determined. 

In most cases, an approximate analysis of the technological processes of plastic metal working is based 
on the introduction of discontinuous velocity fields. When widespread material models are used, discontinuous 
velocity fields are admissible only for an ideal rigid-plastic material in a rigorous formulation. However, these 
fields are used under the conditions of creep [1], viscoplasticity [2], and plasticity with allowance for work 
hardening [3] in an approximate formulation. Moreover, few experiments have shown that in real materials, 
velocity discontinuities exist without violating the continuity [4] (the flow pattern that can be interpreted as 
a flow with velocity discontinuity with an accuracy sufficient for most practical applications is observed). 

In the present paper, we show that under certain restrictions, in a rigorous formulation the velocity 
discontinuities are possible within the framework of the hardening rigid-plastic material model for hardening 
the curves that correspond to the real properties of materials. For some materials such as mild low-carbon 
steel, the hardening curve has a yielding site [5]. In this case. bounded velocity discontinuities can occur 
if the material point intersects the velocity-discontinuity surface when it moves from the undeformed (or 
insignificantly deformed) region. The limitations on the velocity jump depend on the dimension of the 
yielding site. At the same time, the hardening law proposed by Voce [6] is supported by experiments on many 
materials subjected to the developed plastic strains [7-9]. The corresponding idealization of the hardening 
curve makes it possible to introduce the velocity discontinuities for plastic strains that occur in the traditional 
processes of plastic metal working. In constructing the idealized hardening curve, the specific plastic work or 
accumulated equivalent plastic strain is used as a hardening parameter. For a material subject to the Mises 
yield condition, these hypotheses are equivalent for a continuous velocity field (see, e.g., [1{3]). However, if the 
plastic work is used as a hardening parameter, the equation of the hardening law can be written in divergent 
form [11], which can be used to study the properties of the generalized solutions. If, however, the equivalent 
strain is assumed to be the hardening parameter, the generalized solutions can be investigated by the method 
proposed by Hill [12]. 

1. H a r d e n i n g  Curve  and  Veloci ty  Discont inui t ies .  At the initial stage of plastic flow, the 
hardening curve of many metals has a yielding site. Thus, the plastic flow in uniaxial tension occurs for 
the stress ~ -- a0 = const. This state exists until the hardening parameter reaches a certain value at which 
a becomes dependent on this parameter. Upon moderate strains, this dependence is described by various 
functions, which are reviewed in [7]. However, for large strains, the hardening curves of many materials tend 
asymptotically to a line parallel to the abscissa axis where the hardening parameter is laid off. Voce [6] 
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obtained an analytical solution for this hardening curve, and Sevillano et al. [7] reviewed other models. For 
materials  with a face-centered cubic lattice, the hardening curve becomes ahnost asymptot ic  for the strain 

3 [7]. 
Thus,  within the accuracy sufficient for most  practical  applications, the hardening curve can be taken in 

the form shown in Fig. 1. The segment AB corresponds to the yielding site with a = a0. The position of the 

point B is determined by the strain e0. The  segment B C  corresponds to hardening for an arbi trary relation 
between a and ~. The  asymptote  to which the real hardening curve tends is determined by the equation 
a = as.  I t  is assumed that  the idealized hardening curve joins the asymptote  at the point C determined by 

the s t rain es- As was mentioned above, we have es ~ 3 for some materials.  To generalize the hardening curve 
to a complex stress state, we assume that  the Mises yield criterion 

3v -5 (s j ij) 1/2 = (1.1) 

is valid. Here si j  are the components of the deviatoric stress and ae is a known function of the hardening 

parameter .  The form of the function ae is defined by the hardening curve upon uniaxial tension (Fig. 1). 
Thus,  this function is represented by various analytical expressions, depending on the value of the hardening 

parameter .  If the accumulated plastic strain ~eq is assumed to be the hardening parameter ,  then 

ae = a0 for eeq <~ e0; (1.2) 

a~ = as for ~eq/> ~s. (1.3) 

When ~0 < ~eq < ~s, the function ae(~eq) can be taken in the form of one of known relations [7]. The 

accumulated plastic strain is determined by the equation 

d~q 2 1/2 
= V - 3  (~ij~ij)  �9 ( 1 . 4 )  

d t  

Here t is the t ime and ~ij a r e  the components  of the s train-rate tensor. The plastic work W can be used as 
a hardening paramete r  as well. In this case, W0 and W~ play, respectively, the roles of the quantities e0 and 

es, which determine the boundaries between the qualitatively different laws of material  behavior. 
Solutions with discontinuous velocity fields are possible if condition (1.2) or (1.3) holds. In this case, 

the general relations on the velocity-discontinuity surface are the same as in the ideal plasticity and are 

determined,  for example,  in [5, 11]. However, in the model proposed, additional restrictions are imposed on 
these relations. The  fulfillment of condition (1.2) or (1.3) on the discontinuity surface is primarily a restriction 

itself. When  condition (1.3) holds, there are no other restrictions. If condition (1.2) holds, there is one more 

restriction on the magni tude of the velocity jump.  Wi th  the plastic work used as a hardening parameter ,  we 

obtain [11] 

vn[w] = [v ]o0/Cg (1.5) 
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on the discontinuity surface. Here the brackets denote the jump in the function and vn and vr are, respectively, 
the projections of the velocity onto the normal and tangent to the discontinuity surface. Let the quantity 
W be equal to Wn at the material point just before it intersects the discontinuity surface. Evidently, for 
satisfaction of condition (1.2), the quantity Wn must satisfy the inequality 0 ~< Wn <~ Wo. From (1.5), we 
find that  the velocity jump is bounded by the condition 

0 ~< [vr] ~< v~vn(W0 - W, ) /~  (1.6) 

If the accumulated plastic strain is used as a hardening parameter, the relation on the velocity- 
discontinuity surface can be found from (1.4) by Hill's method [12]: [~eq] -- [v~-]/(v~vn). In this case, 
an inequality similar to (1.6) takes the form 

0 < < - (1.7)  

where Cn is the value of Ceq at the material point just before it intersects the velocity-discontinuity surface 
and0~n ~c0- 

Thus, the velocity discontinuities in hardening materials determined by the hardening curve in Fig. 1 

can occur in stress states that satisfy (1.2) or (1.3) and when restriction (1.6) or (1.7) holds. We note that the 

case where these restrictions are valid is characteristic of many steady processes of plastic metal working such 

as rolling and extrusion. To model these processes, the velocity-discontinuity surfaces are introduced when 

the material enters the deformation site where condition (1.2) holds and at the moment when the material 

leaves this site and the fulfillment of condition (1.3) is probable. Whether or not inequality (1.6) or (1.7) is 

satisfied is determined by the parameters of a particular process. 

2. Lateral Extrusion. We consider lateral extrusion (Fig. 2), which has recently been in widespread 

use for improving the material properties [4, 13-15]. The simplest solution can be obtained under the 

assumption that the strain is concentrated on the velocity-discontinuity surface (plane) AB. Without loss 

of generality, one can assume that the velocity v of the translationally moving rigid zones is equal to unity. 

The cross section of an article can be arbitrary. The continuity condition of the normal velocity component 

implies that ~3 = c~/2. Hence, the velocity jump is 

[v~] = 2 cos (a/2). (2.1) 

Let the initial blank be in an undeformed state: cn = 0. We choose Ceq as a hardening parameter. It 

follows from (1.7) and (2.1) that 

tan (a /2)  ~> (2/v/3)~o 1. (2.2) 

For this material, the inequality (2.2) determines the maximum angle a at which the above solution is valid. 
3. To r s ion  of  a Ho l low Disk .  We consider the deformation of a hollow disk pierced by a rod that  

rotates at a constant angular velocity w (Fig. 3). The external edge of the disk is clamped; the at tachment 
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condition is specified on the contact surface of the disk and rod. The  strain in the disk is assumed to be 
plane. There is no solution of this problem for an ideal rigid-plastic material [16]; to be precise, there exists a 
solution according to which the disk is rigid, whereas the strain is concentrated on the velocity-discontinuity 
surface that  coincide with the contact surface. With the inequality dae/dGeq > 0 satisfied for all Geq, the 
solution for a hardening rigid-plastic material was obtained by Collins [17] and that  for a powdered material 
was given by Lippmann [18]. 

We introduce the cylindrical coordinates (rOz) with the z axis coinciding with the symmetry axis of 
the rod, whose radius is denoted by R. In accordance with the results of [16], a solution that corresponds 
to condition (1.2) must degenerate into the velocity-discontinuity surface r = rd; moreover, as follows from 
(1.7), the condition [v~] = v/3vnG0 must hold on this surface for _% = 0. Since the disk is immovable for 
r ~ rd, we have [v~] = Ivo[, where ve is calculated for r = r d in the deformable region of the disk. Thus, 

Ivol = for r = rd. (3.1) 

Furthermore,  

drd  
v~ = dt (3.2) 

In the deformable region of the disk, a~ in (1.1) corresponds to the section BC on the hardening curve 
(see Fig. 1). Assuming that  only the stress-tensor component 7re differs from zero, we obtain 

7u = ere/v/-3. (3.3) 

It follows from the associated flow law that  only the strain-rate tensor component ~re is nonzero. 
Setting vr = 0 and ve = v(r, t), we obtain 

Ov v 
2~0 = ~ r  - 7 "  (3.4) 

We find from (1.4) and (3.4) that 

OGeq = r O(v / r )  (3.5) 
Ot v/5 Or 

The only nontrivial equation of equilibrium has the form 07~o/0r  + 2r~e/r  = 0. It has the general 

solution 

TrO ~-- 7 0 r  - 2 .  (3.6) 

The time function v0 is determined from the condition 7to = a 0 / v ~  for r = rd- Solution (3.6) can now 
be rewrit ten in the form 

r~e = aO(rdlr)21v/-3. (3.7) 

From (3.3) and (3.7), it follows that  

= 2. ( 3 . 8 )  

Since ae is a known function of Geq, the dependence of Geq o n  r and rd is determined. We replace the section 

BC (see Fig. 1) by a straight line. Now 

O'e ~ (70 -'t- (Ts --  (3.0 
Gs - G------O (Geq - G0). (3.9) 

From (3.8) and (3.9), we find that 

~eq = Go + (Gs - so)[(rdlr)  2 - 1]/(p - 1), p = crslao. (3.10) 

Substi tut ing (3.10) into (3.5) and making allowance for (3.2), we obtain 

_ 2v (G  - G 0 ) r d v n  
Or ( p -  1)r 3 
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Hence, 

Vf3(~s  --  CO)Vn r d r 
v = - -  + v0 - - ,  (3.11) 

p - 1  r rd 

where v0 is an arbitrary function of rd. It follows from (3.1) and (3.11) that v0 = V~Vn(r - Pr - 1) 
and, hence, 

v~vn 
v - - - - ( 3 . 1 2 )  

Here we have taken into account the condition v < 0, since it follows from (3.7) that ~-To > 0. From (3.2) and 
the boundary condition v~ = - w R ,  for r = R we find that 

drd w ( p -  1)R 

dt ~ [(-% - pr -- (xs - ~o)(rd/R)]" 

Then, Eq. (3.12) becomes 

- p- 0)(r/rd) - - 

v = ( ~  - pr - (~8 -- -~0)(rd/R) (3.13) 

Solution (3.7) and (3.13) is valid in the plastic region R <<, r ~ r d with the initial condition rd =- R. 
Moreover, the solution fails when ~eq ~- ~s. In this case, condition (1.3) holds for r = R, and the subsequent 
strain is localized on the velocity-discontinuity surface. In contrast to the surface r = rd, this surface 
corresponds to condition (1.3); therefore, no additional restrictions are imposed on the velocity jump in this 
case. It follows from (3.10) that this stage of deformation begins when rd = Rp 1/2. 

Thus, the above solution implies that the material is in the initial state for r >~ RpU2; for R ~ r ~< 
Rp W2, the material hardens, and the yield-point distribution over the radius is determined by Eqs. (3.9) and 
(3.10) for rd = Rp 1/2. 
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